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DETERMINATION OF SETTINGS OF A TILTED HEAD-CUTTER
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University of Illinois at Chicago
Chicago, Illinois 60688
and
M. Lundy and C. Heine
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Fort Wayne, Indiana

Abstract

Kinematics of Gleason mechanisms of hypoid and spiral bevel cutting machines is
considered. These mechanisms are designated to install the position and tilt the
head cutter. The tilt of the head cutter with standard blades provides the required
pressure angle. The authors have developed the matrix presentation of kinematics of
these mechanisms and basic equations for the required settings. An example is

presented based on the developed computation procedure.

1. Introduction

The synthesis of hypoid and spiral bevel gears is an important problem that has
been a subject of intensive research by Gleason engineers [l] and Litvin et al. [2].
Gleason engineers have designed machines to cut and grind hypoid and spiral bevel
gears that are widely used in the industry. An ingenious mechanism is used in the
Gleason gear cutting machines. This mechanism provides the required pinion pressure
angle by tilting the head-cutter and thereby reducing the nuﬁber of different_cutter

blades. A short description of the tilt head-cutter mechanism has been given by



.Lehmann [3] but the basic equations that are necessary for the settings have not
been presented. »The purﬁose of this paper is to invéstigate the kinematics of the
tilt-mechanism and to derive the basic equations for the installment of the machine-
tool settings. |

Henceforth we will use two coordinate systems, Sél) and SiJ), that are rigidly

connected to link k. However, only one coordinate Asystem, S(l), is rigidly V
o

connected to the frame of the cutting machine and Zgi) is the axis- of rotation of

the cradle (Fig. l.1l,a). The head-cutter is pointed to the observer. It is assumed

(i

that vectors g and ¢ are known and they are represented in So )- These vectors have

been already determined at the stage of local synthesis [2]. Vector s = 021)051) is

located in the machine plane zél) = 0 and is represented by the row matrix (Fig.
1.1,b)
5 = [s cosq -s sing. 0] (l.1)
where s = I ogl)oii) I and q determine the magnitude and orientation of vector s.
Vector ¢ is the unit vector of the axis of the tilted head cutter and is
represented in Sél) by the following row matrix (Fig. l.1,b)
[50] = [cosp -sinp cosy] (1.2)

*
Here: p is the angle that determines the orientation of vector ¢ , the projection

of vector ¢ on the machine plane; y is the angle that is formed between the axis of
the cradle and the axis of the tilted head-cutter. The orientation of veétor ¢ must
satisfy the following requirements: (i) it must be perpendiéular to plane P that is
tangent to the root cone of the generated gear (see section A-A in Fig. 1l.1,b) and

(ii) the unit normal to the tilted cone of the head cutter must coincide with the

Cw



unit normal n to the surfaces of the mating gears (see section B-B in Fig. i.l,b).
Due to the tilt of the head-cutter it becomes possible to use blades with the same
shape angle wc for various orientation of the surface unit normal n (section A-A in
Fig. l.1,b).

The sketch of the mechanism for the installment of the machine-tool settings is
shown in Fig. 1.2. The cradle (1) can be turned about the a-axis of the cutting
machine. The cradle carries the so-called eccentric (2) that can be tu;ned about
the b-axis that is mounted on the cradle. The eccentrig carries the swivel (3) that
is provided Qith two joints whose axes are intersected and form angle . The swivel
can be turned about the c-axis of the eccentric. The cutter spindle (4) is a link
that is élso provided with two joints, d and e, whose axes form the same angle € as
the joints of the swivel. The cutter spindle carries the head-cutter that rotates
about the e-axis in thé process of gear generation. Plane P of the blades passes
through the point of intersection of axes d and e. The rotation of the head-cutter
provides the desired velocity of cutting. However, when deriving the equations for
the installment of machine-tool setting, we may assume that the head-cutter and the
cutter spindle are rigidly connected. The tilt mechanism may be also represented as
shown in Fig.l.3. The swivel and the head-cufter spindle are interconnected by the
wedge. The relative motion of the cutter spindle with respect to the swivel is
rotation about the d-axis that is perpendicular to the wedge.

It will be.shown in section 3 of the paper that the required magnitude and
orientation of position-vector s (Fig. l.1,b) is provided by the turning of the
cradle and the eccentric. The required orientation of the unit vectors ¢ are

provided with the turn of the swivel and the cutter spindle.
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2. Basic Kinematic Equations

The basic kinematic equations represent the machine-tool settings in terms of
gi?en barameters of vectors §.and ¢ (Fig. 1.1). The derivation of: equétions for
settings is based on matrix representation of the coordinate transformafion.

The mechanism for the installment of the machine-tool settings is shown in Fig.
1.2. The schematic of the mechanism and the applied coordinate systems are shown in
Fig. 2.1. We consider that the cradle (1), the eccentric (2), the.swivel (3) and
‘the cutter spindle (4) are provided with two rigidly connected coordinate
systems Sii) and Séj) (k = 1,2,3,4). We will use for the coordinate transformation
matrices of two types, G and M, that describe the link geometry, and the relative
métion of.interbonnected 1iﬁks, respectively. The coordinate transformation from
link 4 to link O is'represented as follows

(1), G). (1), (), (1), (3). . (1), o(3), (1)
SO « Sl € S1 * 82 « S2 « S3 <« S3 € SA € S

ity - m‘”)l[G(J“l[M“J’][G(Ji)nu(“)][G(J”MM“J’J[Gfﬁ“]
(2.1)

.Geometry - matrix [G(Jl)] for links 3 and 4 that are provided with two intersected

~ axes of revolute joints is represented as follows (Fig. 2.2,a)

cose 0 (+)sine 0
1= | o 1 0 o) (2=43)
Ci)sine 0 cose 0 )
0 0 0 1 (%.2)‘
The upper and lower signs correspond to £ = 4 and § = 3, respectively.

Matrix [GéJl)] for links 2 and 1, that are provided with two parallel axes of

revolute joints is represented by (Fig. 2.2,b)

&~



1 0 0 %t

€31 =10 1 o 0 (2.3)
o o 1 0
o 0 o0 1

Here: the upper and lower signs correspond to k = 2 and k = 1, respectively.

Matrix.[ME;J)] is represented by the following equation (Fig. 2.3)

cosd sin¢nm 0 0
[Mﬁ;J)] = —sin¢nm cos¢nm 0 0 (2.4)
0 0 1 o
0 0 0 1
Here: n =m=-1; m = 4, 3, 2,1, Equations (2.1) - (2.4) yield
(11) 411 %12 %13 4,
Moy "1 = 221 3 333 3y (2.5)
431 432 833 234
0 0 0 1

where

2 . 2 :
11 cost(cos ecos¢t + sin"e) - sin1c03551n¢t

(Y
n

= ¢ s in + si
ay, COSTCOSES ¢t s1nrcos¢t
costsin2e . R
= ——ee—" (1 - cos + sintsinesin
213 2 ( o) ¢

ay, = #lcosp - cos(p,  +¢)]

a,, = —sin-r(coszecos¢t + sinze) - cosrcosesin¢t

5
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o)
1]

.—sintcosssin¢t + costcosd,

22
ay, = —~5321%2525 (1 - cos¢t) + cosrsinesincpt
ay, = = 2[sin¢c - sin(¢c‘+ ¢e)]
ay, = 8%226 (l - cos¢ )
az, = - sinssin¢t
a4 = sinzecos¢t + cosze
a,, =0 (2.6)

Here: T = (¢C + ¢ t ¢s); ¢c =901 is the cradle angle; ¢ = $10 is the

e

eccentric angle; ¢S = ¢4 is the swivel angle and ¢, = 034 is the cutter spindle
angle. We will also need the coordinate transformation: (i) from Sgl) to Sél) and

(ii) from Sgi) to Sgi). Using the matrix equationsv(2.2)l— (2.4), we obtain
[M(l“l = {1 i)yt

cos(cpC + ¢e) sin(¢C + ¢e) 0. 2[cos¢é - cos(¢c + ¢e)]
_sin(¢c +6,) cos(o_ + ¢.) 0 -elsing - sin(y  + ¢o)]

0 0 1 0
0 ' 0 0 1
(2.7)
byjy by B3 0
= by by by 0 (2.8)
b3; b3y b3y 0
0 0 0 1




Here:

2 2
b, = cos¢s(cos ecosp, + sin €) - sing cosesing

b12 = cos¢ _cosesing + sinq>S cosd,

_ sin2e _ ; .

b13 =— (1 cos¢t)cos¢3 + sin¢831nesm¢t
b,, = - sing (cosze cosp, + sinzs) - cos¢$ _cosesing

21 s t s . t
b22 = - sin¢S cosesin¢t + cos¢_cos¢,

sin¢ssin2€

b23 = - ___——TT___'(I - cos¢t) + cos¢ smesin¢t
b =iiﬁ (1 - cos¢ )

31 2 t

'b32 = —-sine sin¢t

2 2
by; = sin‘ecosp + cos’e (2.9)

3. Determination of Machine-Tool Settings

Determination of Cradle Angle and Eccentric Angle

Consider that vector s is given and it is represented in the machine -

plane zgi) = 0 as follows
s cosq
[s] = | -s sing (3.1)
0
1

where s and q are known values that have been determined at the stage of local

synthesis [2]. To determine the eccentric angle and the cradle angle, we use



the following métrix equation

s cosq 0
s sing | = [1-1621)] 0 (3.2)

0 0

1 1

(1) (1)

where [0 0O O 1] are the coordinates of point 02 in.S2 + Equations (3.2)

and (2.7) yield

s cosq = 9,[cos¢c - cos(¢c + ¢e)] (3.3)

s éinq = 2[sin¢c - sin(¢c + ¢e)] ‘ (3.4)

where £ is a constant - the distance between the centers of the cradle and the

eccentric. After transformations of equations (3.3) and (3.4), we obtain

)
s - e e
% cosq = sin 5—'Sin(¢c +i7—) _ (3.5)
¢ $ )
S ; = — _& _e ' .
EE-Slnq = -sin 5 cos(q;c + 5 ) | o - (3.6)

Equations (3.5) and (3.6) provide in the area of 0 < ¢e < 2r, 0K ¢¢ < 2w ‘two

solutions for ¢e and ¢c represented by the following equations

2 arcsin (3.7)

©
D
]
[ 1]
b

q + 900 - 5= _ (3.8)

S
I

The two solutions are related as follows



I Y N T (3.9)

(o C e

The obtained results show that the required magnitude and orientation of
vector s may be obtained by two combinati&ns of parameters of machine-tool
settings, ¢ and ¢e. Fig. 3.1 and Fig. 3.2 illustrate the installment of the
cradle anglé, ¢c’ and eccentric angle, ¢e’ for the cases where a left-hand
pinion and a right—hand pinion -are generated. - In the practice only the first

solution for the parameters ¢, and . is applied (with 0 < ¢ <m).

Determination of Cutter Spindle Angle and Swivel Angle

The' combination of the cutter spindel angle, ¢t’ and the swivel
angle, ¢S, prévides‘ the required orientation of the .unit vector'g pf the
tilted head cutter. The purpose of this section is to dérive the“equations
that represent ¢t and ¢S in terms of the components_rbf- vector Ce. The
ec;entfic angle, ¢e’ and the cradle angle, ¢c’ are considered as known a; this
stage of derivations. We will use for the derivation of the swivel angle two
alternative techniques.

First Technique Consider that vector ¢ is represented in Sgl)

by the row

matrix

<, = [cXo o C20] = [cxo o cosy] (3.10)

(1)
0

where py is the angle that is formed by the cradle axis, z , and the axis of

the tilted head cutter. The orientation of the axis of the tilted head-cutter

is represented in Sér) by the elements a;3, a3, and agye Here: aj3, ajj,
and aj3 are the direction cosines that are formed by axis 221) (the head-
cutter axis) and the axes xgl), yél) and zgl) (see matrix (2.5)).



The cutter spindle angle can be determined from the equation
ayq3 = cosy (3.11)

Equating equation (3.11) and using the expression for a33 (see equations

(2.6)), we oBtain
. 2 2 »
sin“ecos$,  + cos’e = cosy (3.12)

Equation (3.11) yields

. sin
P

sin 2—- =_W | : (3. 13)

o

This equation provides two solutions for the cutter spindle angle, ¢t’
considering that the magnitude of y is given. The two solutions for ¢t are

related as follows
0P = o — (D - (3.14)

In the practice only the first solution for ¢El) (0 < ¢£l) < 1) 1is used. The

derivation of the swivel angle is based on equations
a,3 = ¢, > d,3 = ¢ (3.15)

Using the expressions for ayj3 and asy (see equations (2.6)), we obtain

costsin2e ',, R _ ' -
— (1 cos¢t) + sintsinesing = c . | (3.16)

10



sintsinle . _
—-———?r—-—-(l cos¢t) + costsinesing, = o (3.17)
where 1 = ¢c + ¢e + Pge
We may transform equations (3.16) and (3.17) and represent them as a system of

two pseudo-linear equations in the unknowns cost and sint as follows

a11 costT + alzsint = b1
a,, costT - a,,sint = b2 (3.18)
Here:
= = gin2esi 2 fﬁ- ; a = a =-ginesing
311 T 3y T sinlesin o= 5 A, = a,, b
b1 =c s b2 = cyo (3.1?)
The solution of equation system (3.18) for the unknowns is
3110 * 31,0,
cOoST = 5 5 = A
a + a
11 12 (3.20)
R 150 Wt Vo W 5
sint = 5 N >
1 7 %12
or
tan L -L-4 (3.20,a)
2 B

Then we obtain that

11



b =T ~ b, = 9, | | (3.21)

Second Technique
' (i)

- Consider that vector ¢ is represented in coordinate system 52 that is

rigidly connected to the eccentric and is given by the row matrix

[CZ] [cx2 cy2 c22] . T

Here:

le,] = LS 1e ) | (3.22)

where [Lgal)] represents the coordinate transformation from Sél) to Sgl) and

is given by (see equation (2.7))
(o) o |

ii); _ ii !

w1 = gt |

0 02
cos(o, + ¢,) ~sin(¢, + ¢,)
= sin(q;c + ¢e) cos(¢.C + ¢e) 0 ' (3.23)
0 0 1

The unit vector of the axis of tilted head-—cutter is represénted in ng) by

1
t

its direction cosines b3, b3 and bgg (see matrix (2.9)). The determination
of the cutter spindle angle, ¢t, and the swivel angle, ¢q, is based on the

following equations

(3.24)

12



Equation b = c provides the same solution for as it has been
33 z2 oy

represented by equation (3.12). Using the remaining two equations

by = 49 Pp3 = Cpy

we obtain after transformations the following system of two pseudo-linear

equations in the unknowns coso and sin¢s

LI cos¢S tm, sin¢s =n, (3.25)

my; cos¢S + LI sin¢s = né (3.26)
Here:

mll = §i%25 (1 - cos¢t), m, = sinesin¢t

m21.= ﬁlz’ M2 = TMp1r M T %20 M2 T Gy

The solution of equations (3.25) and (3.26) for the unknowns cos<;>S and sih¢s

yields
m, n, +m .n
cosp_ = '1121 éz 2 _¢ (3.27)
mp Yo
m n - m n
sinp_ = 21—l 2 _p (3.28)
m R
where 2 + m2 = Qsinzssi 2 EE- cos2 Yy
el T M no3g 2

L3



or

¢
1 ~-¢C
tan 5 5 (3.29)

Numerical Example

The input data in the discussed example is adobted from literature [2]

(1)

anq is represented in coordinate'system S0 as follows (length units in mm):

[133.09 cos(84.0330); -133.09sin(84.0330); 0]

7]
[l

[0.1085; =0.1157; 0.9874]; & = 222.25; ¢ = 150

N
(]

cosn =c, = 0.9874

The following computations has been performed for the Gleason Cutting
Machine. #116. Equations (3.7) and.(3.8) provide the data for the eccentric
“angle, P and the cfadle angle, $.e Equation (3.13) provides the data for the
cutter spinde angle, L Eqﬁations (3.21), (3.20) and (3.19) provide the data
for the swivel angle, QS. Alternative equétions (3.27) and (3.28) for
determination of ¢S may be also used.

The final results of computations are represented in the following table

TABLE 1
Eccentric Cradle Angle, Cutter Swivel
Angle, P ¢c Spindle Angle, Angle,
¢t ¢S
73.57° 137.25° 35.7175° 268.10°

14



Conclusion

The kinematics of the Gleason's mechanism for the installment of the
machine-tool settings has been investigated.

The basic euations for the determination ofAthe eccentric angle, cradle
angle, cutter spindle angle and the swivel angle for the gear cutting machine
have been developed. These equations provide the required magnitude and
orientation of position-vector s and the orientation of unit vector ¢ of the
axis of the tilted head-cutter axis (Fig. l.1l,b).

A numerical example that illustrates the proposed computation procedure

has been represented.

15



Nomenclature

Unit vector of tilted head-cutter axis

<

L Machine constant

P Angle determining the projection of cufter axis on machine plane
q Basic cradie'angle determining location of cutter axis

s Radial setting for pinion head-cutter axisv

u Angle of head—cufter axis inclined with cradle axis

€ Wedge angle
Cradle angle

¢2 Eccentric angle
Swiﬁel angle

¢t Cutter spindle angle

16
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